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Figure 1: Facial landmarks used to define the face-space. The numbers corre-
spond to the index α of various landmarks with Cartesian coordinates ~̀α.

1 Detailed description of the face-space

As explained in sections Results and Methods (main article), the face is parametrised
as a vector d = (di)

D
i=0 of 11 inter-landmark distances, shown in figure 1-A (main

article). These are the vectors defining the “genoma” of the population mem-
bers in the genetic algorithm. In the selection step of the genetic algorithm
(see section 3), a facial image is generated from every vector d in the genetic
population. This is done through the generation of an auxiliary 36-dimensional
vector of Cartesian landmark coordinates, L = (~̀α)18α=0 (with ~̀

α = (xα, yα)),
obtained from d. The vector L is a list of the x, y coordinates (in pixels, the
y growing downwards in the image) of the various landmarks evidenced in fig-
ure 1, labelled by α. The facial image corresponding to d is then generated,
using the technique described in sec. Methods (main article), from the triplet
{I0,L0,L}, where I0 is the reference portrait image, L0 its Cartesian landmark
coordinates, and L is the vector of Cartesian landmarks generated from the
desired vector d. The mapping L↔ d is one-to-one, given the set of Cartesian
landmark coordinates of the reference portrait being used, L0. The information
present in L0 is used to impose some constraints: the eye aspect ratio (the ~̀1–~̀3
segment slope (y3 − y1)/(x3 − x1)) is constant and equal to that of L0, and the

same is valid for ~̀1–~̀4 (otherwise the pupil could become an ellipse); y9 − y10
is constant and equal to its value in L0. Moreover, the reference portrait de-
termines the origin of the reference frame, the coordinate ~̀0, which is fixed as
well as ~̀16. The information in L is highly redundant: by construction, the x
coordinates of left/right landmarks are symmetric with respect to x0 and share
the y coordinate; the 12-th landmark is defined in such a way that its ordinate
coincide with that of 7, 18, 8, 13, and, analogously, y1 = y17 = y2.

Let us now describe in detail the two parametrisations used to construct the
face-space vectors f .
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i type (h/v) definition name
0 v y14 − y0 zygomatic bone ordinate
1 v y17 − y0 eye-forehead distance
2 v y9 − y17 nose length
3 v y18 − y9 nose-mouth distance
4 v y16 − y18 chin-mouth distance
5 h x15 − x14 face width
6 h x2 − x1 inter-eye distance
7 h x8 − x7 mouth width
8 h x3 − x4 eye width
9 h x11 − x10 nose width
10 h x13 − x12 jaw width

Table 1: Definition of the inter-landmark distance facial coordinates fi in terms
of the horizontal/vertical (h/v) distances among landmark coordinates ~̀α (see
figure 1).

i α(i) c(i) = x, y name
0 1 x left pupil abscissa
1 3 x internal left eye limit abscissa
2 7 x left mouth limit abscissa
3 10 x left outermost nose limit abscissa
4 14 x zygomatic bone abscissa
5 12 x left jaw limit (at the mouth’s height) abscissa
6 1 y left pupil ordinate
7 7 y left mouth ordinate
8 9 y nose endpoint ordinate
9 14 y zygomatic bone ordinate

Table 2: Definition of the Cartesian landmark facial coordinates fi = c(i)α(i)
in terms of the landmark coordinates ~̀α = (xα, yα) (see figure 1). For each
coordinate i we specify α(i) and c(i) = x or y.

• Inter-landmark distances. The facial vector components are taken as the
11 distances in d

fi = di (1)

The names of the 11 resulting facial coordinates are shown in table 1.

• Reduced set of Cartesian landmark coordinates. The facial vector com-
ponents are taken as a vector of non-redundant, reduced set of D = 10
Cartesian landmark coordinates, or D non-redundant components of the
vector L. In other words:

fi = c(i)α(i), (2)

with α(i) = 1, 3, 7, 9, 10, 12, 14 and c(i) ∈ {x, y}, specified in table 2.
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Both sets of coordinates such defined are equally dimensional: the inter-
landmark distances d have one more degree of freedom, but are subject to the
constraint h =

∑4
i=1 di = 1, so that the dimensionality of both sets is 10. As

previously stated, the mapping among both vectors is one-to-one: they contain
the same information, and are such that there is no redundant information in
the reduced L (given the reference portrait vector).

All the observables that we have calculated in the data analysis (see section
4) can be computed in terms of d’s or in terms of reduced L’s. All the re-
sults presented in this article are qualitatively identical using either face-space
parametrisation. Some results are clearer in terms of L’s, due to the presence of
the constraint h = 1 to which the d vectors are subject. This is the case of the
correlation matrix, that we have decided to show in figure 9 in terms of reduced
L’s (see below). The correlation matrix in terms of inter-landmark distances
will be analysed in-depth in [1].

2 Beauty as extrema in a given coordinate space

As explained in the main text, our experimental setup allows a subject to sculpt
a population of facial vectors, considered as an empirical sample of his/her at-
tractor, or preferred region in face-space. The efficient characterisation of the
attractor from a finite set of binary choices by the subject is an inference prob-
lem, that we tackle as an optimization problem, solved with the use of a genetic
algorithm. This strategy is justified and motivated through the following as-
sumptions. Given an experimental subject and a parametrisation of the human
face in a real-valued vector, we assume that there exists a region of the face-space
that represents the subject’s preference, in the sense that he/she would statisti-
cally tend to prefer images in that region rather than those farther from it, and
that this region can be probabilistically characterised within some accuracy. We
postulate the existence of a subject-dependent probability distribution in the
face-space, Lg, such that Lg(f)/Lg(f ′) represents the relative probability of the
subject to express his/her preference for the facial image whose coordinates are
f (so that a flat function represents a completely indifferent or unpredictable
subject) [A convex function, locally flat around a set of points f∗, ∇L|f∗ = 0,
H = det Hess[L](f∗) < 0 would represent a subject which tends to refuse local
variations away from such set, with a probability depending on the modulus of
H .] If the subject could modify the coordinates of an image following his/her
personal taste, he/she would tend to finally choose the face-space region corre-
sponding to the relative extrema of the function Lg (if the facial image details,
not parametrised by f , are unchanged and given by the reference portrait). Of
course, in real experiments, the function Lg can only be inferred with uncer-
tainty (induced, at least, by the subject’s uncertainty), leading to an inferred
function, L. The present experimental scheme provides a finite set of represen-
tative vectors sampled with experimental uncertainty from Lg; hence, a function
L may be inferred from such representative vectors, using the Maximum En-
tropy method [1]. The inference quality depends on both the extent to which
the set of populations is representative of the subject’s attractor (a first-step,
experimental inference), and on the inference procedure of the set of populations
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(the second-step inference, leading to L). Under these working hypotheses, one
is allowed to treat the inference of the single-individual attractor as an optimi-
sation problem of a multi-valued function that, however, cannot be evaluated
numerically. We now explain how this is done in our experimental scheme.

3 Genetic Algorithm details

Let us specify the details of the genetic algorithm for face-space exploration.
Each instance of the experiment is defined by a set of algorithm parameters,
P = {N,T, ρ, µ}. The algorithm defines a stochastic, discrete time dynamics
(the time index t) of the population of facial vectors f (s,n)(t), n = 1, . . . , N , cou-
pled to the dynamics of an abstract subject s, which performs binary choices
among couples of vectors according to some stochastic rule. Even if the subject’s
binary choices were deterministic, the dynamics is intrinsically stochastic in the
initial condition and in the sequence of random numbers. (1) Initialization.
At t = 0, the initial vectors f (s,n)(0) = ξ(s,n) + f0 are taken as N facial vectors
whose coordinates are random, uncorrelated, zero-averaged fluctuations around
a given (common to all subjects) facial vector f0. (2) Recombination and
mutation. For each of the N facial vectors in the population, f , a child, or
potential offspring vector v, is generated, according to a rule specified in the
next paragraph (based on recombination and stochastic mutation of the existing
vectors in the population). (3) Selection. For each of the N couples of vec-
tors of the original and of the offspring population, f ,v, a pair of facial images
I(f), I(v) is generated (with the image deformation algorithms described in
sec. Methods (main article). Afterwards, the subject chooses among the two
images (the one corresponding to a vector belonging to the current generation,
and the one corresponding to its child), for each of the N pairs. The N chosen
facial vectors (of which some are offspring and some are parents in the t-th
generation) will form the successive generation; (4). One now goes recursively
to (2) and t+ = 1 until t = T .

Differential Evolution Algorithm. The rules in step (2) are given by a par-
ticular genetic algorithm called Differential Evolution Algorithm [2, 3]. It has
been chosen due to its suitability to find multiple extrema and to the fact that
it does not require the numerical evaluation of the function to be maximised,
say L, but only the boolean inequality L[f ] < L[v]. In our experiment, the
evaluation of this inequality corresponds to the choice of the subject between
two images I(f), I(v). Given the population at time t, the son, v(j), of the
j−th vector of the population f (j)(t), is generated from this vector and from
two different parents, f (j1), f (j2), with 1 ≤ j1 6= j2 6= j ≤ N , randomly selected.
The mutation and recombination steps are, ∀i = 1, . . . , D:

v
(j)
i =

{
f
(j)
i (t) + µ (f

(j1)
i (t)− f (j2)i (t)) with prob. ρ

f
(j)
i (t) with prob. 1− ρ

The selection and generation update steps can be written as:

f (j)(t+ 1) =

{
v(j) if L[f (j)(t)] < L[v(j)]
f (j)(t) otherwise
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Note that the algorithm acts on every i-th single coordinate independently.
ρ is called the crossover probability and µ the mutation factor, quantifying the
amount of stochastic mutation in the genetic evolution. In our experiment, the
evaluation of the inequality (3) corresponds to the choice between the corre-
sponding facial images, I[v(j)] and I[f (j)(t)], by the subject. He/she chooses
among the images corresponding to the first parent’s vector and its child; the
selected vector survives and becomes part of the successive generation.

The FACEXPLORE software operates, in this way, in a regime defined by
four parameters, ρ, µ, N and T (and by other algorithm details, such as the way
in which the initial population of vectors is initialised, the reference portrait,
the constraints imposed to the facial vectors at each generation, or the size of
the sub-grid to be warped in the image deformation algorithm, see sec. Methods
(main article)). Especially for large values of ρ, and for small values of µ, N and
T , the results of single realisations of the experiment depend on the sequence
of random numbers and on the random initial condition used in the particular
realisation. This is a general characteristic of the genetic algorithm, arising also
in the optimisation of deterministic functions, not a specific characteristic of
the FACEXPLORE software. For lower values of N , the algorithm does not
perform an exhaustive local search in the parameter space at each generation.
The offspring generation is biased by its finiteness, a fact that conditions the
experimental course and, consequently, the outcome. Depending on the param-
eters P, the algorithm stochasticity could become large enough to hinder the
differences among different subjects’ choices. The parameters can also be such
that the stochasticity is moderate, in the sense that they allow to resolve the
single subject peculiarities, whose existence has been demonstrated in the main
article. Thus, for different values of the parameters P, we can define two main
situations:

• For large ρ and small µ, N and T (fast-search regime): the algorithm “con-
verges fast” (in the sense of Fig. 2 (main article)), but the resulting final
populations vary significantly when the subject repeats the experiment.

• For sufficiently small ρ and sufficiently large µ, T and, above all, N (what
we call the slow-search regime): the experiment requires more choices to
“converge”, but the resulting population will respond more to the subject’s
criteria and less to the randomness, i. e., to the particular realization of
the experiment.

Ideally, at the end of the process, the population of vectors reaches a pseudo-
stationary regime which is stable against local fluctuations, i. e. that the user
does not want to change. For experiments deep in the slow-search regime, the
average differences between the outcomes of different realizations of a single-
subject experiment, µsc, should no longer depend on the algorithm parameters
(µsc would not decrease using slower parameters P). In this case, the only
experimental uncertainty would be the subject’s uncertainty. In practice, such a
deep slow-search regime would require a large number of choices. The algorithm
parameters must satisfy a compromise between the desired accuracy and the
time required by the subject to perform the experiment.

A crucial point is how the initial population of vectors is selected. If the
standard deviations of ξ are large enough, and for sufficiently large N , the
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initial population covers a broad region of the face-space (actually, the first-
generation facial images often result grotesque and misshapen). Together with
a large value of N , T , µ and 1−ρ, it is expected that, again, the initial condition
ξ(s,n) and f0, do not influence the outcome of the experiment.

The differential evolution algorithm described above generates an offspring
population of vectors by addition of a component-wise fluctuation (proportional
to the mutation constant µ, see equation 3), whose average amplitude is pro-
portional to the component-wise distance between two members of the parent
population. For larger values of t the vectors in a population tend to be confined
nearer to the extrema or saddle points of the function L; their average distance
tend to decrease and, consequently, also the mutation fluctuations. This feed-
back loop is such that the distance among population vectors unavoidably tend
to decrease, especially in the fast-search regime. The velocity with which the
distance among intra-population vectors decreases is an estimation of the steep-
ness of the function L to be maximised, around its maxima (or of the subject’s
criterion definiteness, see 2).

Alternative way of assessing the subject self-consistency. In ex-
periment E2 we have estimated the consistency of different volunteers’ criteria,
comparing how close are the populations of vectors sculpted by a given subject in
the final generation, {f (s,n)(T )}n, of different realisations of the experiment. An
alternative way of “sampling” the relevant face-space region of a subject (hence
comparing different subjects’ relevant regions) could be that of performing a
longer experiment in which a proper stationary state is reached, such that the
populations in the latest generations of the genetic experiment are statistically
indistinguishable. If it exists, the stationary state (under a stationary dynamical
rule), should not depend on the initial condition and on the sequence of num-
bers. This would require, of course, to modify the algorithm (that otherwise
necessarily tends to produce closer and closer generations) with the addition of
a fluctuation term that is constant in time:

v
(j)
i = f

(j)
i (t) + µ(f

(j1)
i (t)− f (j2)i (t)) + χi with prob. ρ (3)

v
(j)
i = f

(j)
i (t) with prob. 1− ρ (4)

being χ(t) a D-vector of uncorrelated random numbers (in t and in their compo-
nent) with null average and small (smaller than µsc), fixed standard deviation.
We propose this variant of the algorithm as an alternative strategy for future
experiments.

4 Calculation of observables and their errors

The observables that we have calculated to perform the data analysis are func-

tions of the set of sculpted facial vectors, S = {f (s,n)i }S,Ns=1,n=1, defined in a
general fashion, independent of the face-space parametrisation (restricted land-
mark Cartesian coordinates or inter-landmark distances). They are defined as
the following.

• Average of facial vectors. 〈fi〉 = (1/(SN))
∑
s,n f

(s,n)
i .
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• Standard deviation of facial vectors. Crucially, the standard devia-
tion of the single facial vector coordinate σi is not computed along both

indices (s, n), std({f (s,n)i }s,n), since the facial vectors within the popu-
lation of a single individual are correlated. As a consequence, the naive
standard deviation is an underestimation of the inter-subject standard de-
viation. The statistical error of the average, σ〈fi〉 is calculated instead as
a Bootstrap error, or the standard deviation of a series of B � S averages
of f over different subsamples Sb made by a random, identically uniformly
distributed set of S subject indices. For each subject index s, only one
population facial vector, ns is considered:

〈fi〉b =
1

S

S∑
j=1

f
(sj(b),nj(b))
i (5)

σ〈fi〉 = std (〈fi〉1, . . . , 〈fi〉B) (6)

where, for each b, sj(b), nj(b) are a set of S independently distributed (in
b and in j) integer numbers in the intervals [1 : S] and [1 : N ] respectively.
In this way, the standard deviation of the average is computed over a set
of averages where, in each one, S subjects are used (hence this error is
proportional to ∼ S−1/2, as desired), and such that only uncorrelated (i.e.,
coming from different subjects) facial vectors are used in each average 〈·〉b.
The inter-subject error of the single coordinate is then computed simply
as:

σi = S−1/2 σ〈fi〉 (7)

• Standarised variables. A set Y of standarised facial vector is con-
structed standarising each vector in S:

y
(s,n)
j = (f

(s,n)
j − 〈fj〉)/σj (8)

• Correlation matrix. The correlation matrix of a standarised set of
vector coordinates G = {y(s)}Ns=1 is computed as:

Cij [G] =
1

S

∑
s

y
(s)
i y

(s)
j (9)

The matrix C used to compute the t- and p- values reported in table 4
and figure 9 is the average and standard deviation of this quantity over a
set of populations. It is computed, again, with the Bootstrap method, in
such a way that the sum in eq. 9 runs over different subject populations,
and only one facial vector of each population is considered. The Boot-
strap error corresponds to the standard deviation from subject to subject,
proportional to S−1/2. In general, the Bootstrap average and error of an
observable O of the set of standarised vector populations Y is

〈O〉 = average (〈O〉1, . . . , 〈O〉B) (10)

σO = std (〈O〉1, . . . , 〈O〉B) (11)
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where:

〈O〉b =
1

S

S∑
j=1

O[y(s1(b),n1(b)), . . . ,y(sS(b),nS(b))] (12)

TakingO[G] = C[G] in eq. 9, we obtain the average and standard deviation
of the correlation matrix.

Since the averages have been subtracted in the standarised variables, the
correlation matrix of a set of uncorrelated facial vectors vanishes within
their Bootstrap errors, i.e., presents a large p-value, p ∼ 1/2.

• Principal components. We define the set of principal components of the

facial vectors, Y ′ = {y′(s,n)i }S,Ns=1,n=1, where a vector y′ is the vector of the
projections of the vector y along the various principal axes or eigenvectors
of the correlation matrix, y′ = Ey where E is the row-eigenvector matrix,
ECE† = Λ and Λ = diag(λ1, . . . , λD), being λj the j-th eigenvalue of C.

• Distances between sets of vectors. Given two sets of vectors, S1 =
{f (s,n)}S1,N

s=1,n=1, S2 = {g(s,n)}S2,N
s=1,n=1, the inter-set pseudo-distance is de-

fined as:

dist(S1,S2) =
1

S1S2

∑
s1,s2

D(f (s1,·),g(s1,·)) (13)

where D is the (per coordinate) inter-population pseudo-distance, defined
as:

D(f (s1,·),g(s2,·)) =
1

N2

∑
n1,n2

1

M
d(f (s1,n1),g(s2,n2)) (14)

and where M is the dimension of the vectors f , g, and d(x1,x2) is the
face-space metrics or the distance between two single vectors in face-space.
It can be defined in various ways (see [4, 5]):

1. Euclidean-metrics. As the Euclidean distance between the princi-
pal components of the vectors: d(f1, f2) = ||f ′1 − f ′2||, where || · || is
the Euclidean metrics in D dimensions, being f ′ = Ef , and E the
row-eigenvector of the last r eigenvectors of the correlation matrix
(corresponding to non-standarised facial vectors). Taking r = D, it
coincides with the Euclidean distance, ||f1 − f2||.

2. Euclidean-metrics with standarised vectors. As the Euclidean
distance between the principal components of the standarised vectors:
d(y1,y2) = ||y′1 − y′2||, being y′ = Ey, and E the row-eigenvector of
the standarised correlation matrix.

3. Mahalanobis-metrics. As the Euclidean metrics between stan-
darised principal components of the vectors, or: d(y1,y2) = ||y′′1 −
y′′2 ||, where y′′ = y′/λ, being y′ = Ey (and λ the eigenvalues of the
correlation matrix), the vector division meaning a component-wise
division.
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4. Angle-metrics. As the angle (in the D-dimensional face-space) sub-
tended between two standarised principal components, or: d(y1,y2) =
arccos(y′′1 · y′′2/||y′′1 || ||y′′2 ||).

5. Byatt-Rhodes metrics. As:

d(y1,y2) =
||y′′1 − y′′2 || |y′′1 | |y′′2 |

y′′1 · y′′2 + ε
(15)

ε being a small regularising term.

All the results are quantitatively equivalent using instead the min-inter-
population pseudo distance:

Dmin(f (s1,·),g(s2,·)) =
1

2

1

N

{∑
n1

min
n2

+
∑
n2

min
n1

}{
1

M
d(f (s1,n1),g(s2,n2))

}
(16)

• Reducing the number of principal components. In the main text,
we have also analysed the effect of reducing the number of principal com-
ponents in the definition of the metrics. This is implemented as keeping in
y′ (and, consequently, in y′′) the principal components of y corresponding
to the r ≤ D highest eigenvalues of C only. If they are ordered in increas-
ing order,: λ1 ≤ λ2 ≤ · · · ≤ λD, this is y′ = Ey being E the r×D matrix
made by the last r row-eigenvectors.

• Statistical errors of distances. The statistical error associated to the
metrics among sets of populations, equation 13, is the standard devia-
tion of the argument in the sum across couples of different indices s1, s2.
The statistical error associated to the inter-population pseudo-distance,
equation 14, is the standard deviation of the argument in the sum across
couples of different indices n1, n2. The latter error is lower than the for-
mer.

5 Assessment of the convergence of populations
of vectors

The degree of coherence of the single subject’s criterion in experiment E1 may
be estimated through the degree of convergence of the population of vectors
sculpted by the subject as a function of the generation index, t. In figure
2 (main article) we show the self-distance between the population of vectors
sculpted by 10 randomly chosen subjects as a function of t. For a subject s, this
quantity is (see 13):

d(s)conv(t) = D(f (s,·)(t), f (s,·)(t)) (17)

or the pseudo-distance between the population sculpted by the s-th subject
at the t-th generation and itself. The figure errors have been calculated as
explained in the precedent subsection.
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Remarkably, different subjects exhibit different degrees of convergence. The
reasons for such a diversity is an argument of possible cognitive interest in itself.
A proposal for further work is to investigate the relation among the convergence
velocity shown in Fig. 2 (main article), the subject’s response times (see 7), and
the self-consistency distance of each subject (see Fig. 3 (main article)).

In any case, after some generations, the populations of all the subjects in the
sample result more self-distant (see Fig. 2 (main article)) than the populations
resulting from a null model of genetic experiment, performed with the same
parameters as in experiment E1 but in which the selection step (equation 3) is
random. In Fig. 2 (main article), the error bars of the null test self-distance
among populations refer to the standard deviation of the self-distance in the
t-th generation across different realisations of the null model experiment.

6 Precision of the experiments

As previously explained, the vector of facial coordinates f contains the inter-
landmark distance vector d or the reduced set of landmark Cartesian coordinates
L. In the first case, the coordinates represent distances in units of total facial
length. Thus, they are not absolute distances, but proportions. In the second
case, the coordinates correspond to pixels, divided by the reference portrait
length in pixels. In both cases, they are floating point quantities, and the sys-
tematic error associated to the single vector is limited by the image resolution in
pixels, & 400−1. This is roughly the precision with which we resolve the subject
intra-population distance using the Euclidean metrics (per coordinate), i.e., the
average distance along the single “physical” coordinate, see Fig. 4. The self-
consistency distance in physical coordinates is, remarkably, barely twice than
the image resolution. The average and standard deviation of self-consistency
distances per coordinate using the Euclidean metrics is: 0.0045(9). This corre-
sponds to a precision of 0.80(15)mm of the average female facial length. The
intra-subject distances are estimated with an even higher precision (Fig. 4).

7 Response times

As explained in sec. 3, the (3) selection step of the genetic algorithm is
implemented by the human subject, in our experimental scheme, as a choice
among two facial images generated by the computer. In figure 2 we report the
histogram of the (S1NT ) elapsed time between consecutive left/right choices of
every subject (with NT = 280 choices for each one) in experiment E1.

8 Distances among different partitions of the
dataset

In figure 3 (main article) we report the self-consistency (among couples of popu-
lations sculpted by the same subject, for all the subjects in E2) and inter-subject
(among couples of populations sculpted by different subjects in E1) distance
histograms. The distances have been computed using the angle-metrics with

11



0 2 4 6 8 10
time [s]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

H
(ti

m
e)

0.5 0.0 0.5 1.0
log10time

2.0

1.5

1.0

0.5

lo
g 1

0H
(ti

m
e)

Figure 2: Histogram of delay time between consecutive left/right choices (be-
tween all the 280 choices of all subjects in E1). The most probable time is
around 1.75s. Inset: the histogram in log-log scale.

npc = 7 principal components. In figure 3 we present a comparison of the differ-
ence among histograms, t12 = (µ1−µ2)/(σ2

1+σ2
2)1/2, using different values of npc

in the face-space metrics definition. Such difference among histograms provides
an estimation of the overlap among both distributions: the cumulative normal
distribution of t12, p12, is actually the overlap probability of both histograms,
if they are supposed to be normal distributions. The quantity t12 is, interest-
ingly, a non-monotone function of npc, the largest self-consistency/inter-subject
distance is obtained with the angle-metrics using npc = 7 principal compo-
nents. For this metrics, the probability of two facial vectors sculpted by the
same subject to be closer than two facial vectors sculpted by different subjects
in E1 is p12 =0.79(1). This number coincides, within its statistical errors, with
the empirical fraction of couples of inter-subject distances that are larger than
a self-consistency distance. As mentioned before (see Sec. 3 for details), this
probability is arguably underestimated, due to the finiteness of the experimental
procedure.

Notice that σ2
i in the definition of t12 are the variances of the histograms,

not the variances of the averages of the histograms, σ2
i /Ni). These are used to

compute the p-value of the histogram difference, corresponding to the Student’s
t-value t = (µ1 − µ2)/(σ2

1/N1 + σ2
2/N2)1/2, practically equal to zero, p < 10−30.

For completeness, in Fig. 4 we present the histograms corresponding to the
intra-subject, inter-subject, self-consistent, inter-reference portrait and inter-
subject gender sets of inter-population distances calculated with the Euclidean
metrics in face-space (see below), i.e. the distance per coordinate using the D
physical coordinates. Although the self-consistent and inter-subject histograms
are more overlapping with respect to the angle-metrics histograms, they are still
very obviously distinguishable (p < 10−16, p12 = 0.72(5), t12 = 0.61(2)).

Our experimental method succeeds to resolve the differences among single-
subject preferred variations. This is possible thanks to the reduction of the
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Figure 3: Histogram difference t12 among self-consistent and inter-subject pop-
ulation histograms of distances, versus the number of principal components con-
sidered in the definition of the face-space metrics. Different curves correspond
to different kinds of face-space metrics.

face-space dimensionality. Such a reduction is implemented by considering ge-
ometrical degrees of freedom only, on the one hand, and, on the other hand, by
keeping low the dimension of the (geometric) face-space.

The ideal number of dimensions is subject to the accuracy/complexity trade-
off. A too low-dimensional face-space would not allow to detect the systematic
inter-subject differences. As a limit case, think about a face space with a single
inter-landmark distance, as the inter-eye distance: in this case, the subjects
would clearly not result distinguishable. The differences among different sub-
jects criteria are more complex, and involve, at least, several (linear combina-
tions of) facial coordinates.

Conversely, a too high-dimensional face space would not allow a subject to
sculpt a consistent (among several realisations) version of his/her attractor in
the face-space in a reasonable time. In other words, the resulting set of sculpted
faces obtained after a moderate number of choices (of pairwise choices in the
software FACEXPLORE), would result less significant, or more dependent on
the single realisation of the experiment, and less on the subjects criterion.

Such a trade-off is somehow reflected in the non-monotonic behaviour of t12
versus npc.

9 Averages and standard deviations of facial co-
ordinates

In figure 5 we show the results of the experimental averages, 〈fi〉 and their
standard deviations, σi, in terms of inter-landmark distances, fi = di (see sec.
Methods (main article)). For all the coordinates, the standard deviations are
much lower than the averages.
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metrics), using the Euclidean-metrics in face-space with 11 coordinates (the
“physical” distances). The arrows indicate the resolution of the image pixel
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measured in mm).
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Figure 5: Averages and standard deviations (as error bars in the main figure, and
in the inset) of the experimental facial coordinates, in terms of inter-landmark
distances.

14



10 Statistical distinguishability of partitions of
the dataset

We have performed single component (in physical, yi or principal, y′i coordi-
nates) statistical tests between different sets of populations of facial vectors.

Given two sets of populations, S1 = {f (s,n)}S1,N
s=1,n=1, S2 = {g(s,n)}S2,N

s=1,n=1,
we consider the t-value, and the consequent p-value, of the differences among
the averages of the yi (or of the y′i) coordinate in both sets of populations,

〈f (s1,·)i − g(s2,·)i 〉s1,s2 . The average 〈· · ·〉s1,s2 is performed again by bootstrap-
ping, summing over all the couples (s1, s2) and over many (B = 500) realisations
in which different population indices (n1(s1), n2(s2) are chosen for each tuple
s1, s2. In this way, the error of this quantity is of order ∼ (S1S2)−1/2:

〈fi − gi〉b =
1

S1S2

S1,S2∑
s1,s2=1

f
(s1,n1,b(s1))
i − g(s2,n2,b(s2))

i (18)

〈f (s1,·)i − g(s2,·)i 〉s1,s2 = average (〈fi − gi〉1, · · · , 〈fi − gi〉B) (19)

σ(〈f (s1,·)i − g(s2,·)i 〉s1,s2) = std (〈fi − gi〉1, · · · , 〈fi − gi〉B) (20)

where, again, n1,b(s), n2,b(s) are random, uncorrelated (in s, in b and in 1, 2)
integers in [1 : N ].

According to the reference portrait. In figure 6 we present the single
component differences among the sets of vectors S1 and S2 described in sec.
Results (main article), corresponding to the outcomes of experiments E1 and
E3, respectively, in terms of inter-landmark distances as facial vectors, yi = di.
Only some facial coordinates are distinguishable (within our experimental errors,
∼ S−1/2) in both sets, specially di with i = 3, 5, 8. Qualitatively, the same result
is found computing the differences of facial coordinates sculpted by the same

subject with different portraits, f
(s,n1)
i − g(s,n2)

i .
According to the subject’s gender. In figure 7 we present the single

component differences among the sets of vectors sculpted by female and male
subjects in experiment E1, respectively, in terms of inter-landmark distances
as facial vectors, fi = di. Only some facial coordinates are distinguishable in
both sets, specially di with i = 1, 2, 8, 9, 10 (eye height, nose height, eye width,
nose width and zygomatic bone height). In figure 8 we show the same results
but using the principal components, y′i. Only some principal components (i =
1, 4, 9, see subsection 12 are distinguishable within the experimental errors. The
principal component exhibiting largest variability, y′10, is barely distinguishable
in the female/male subject partition.

11 Pairwise correlations among facial coordinates

The list of the most strongly interacting couples of facial coordinates (the Cij
matrix elements with higher tij-value) is presented in terms of inter-landmark
distances in table 3, and in terms of landmark Cartesian coordinates in table 4.
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Figure 6: Impact of the reference portrait in different facial coordinates. Differ-

ences among facial coordinates f
(s,·)
i − f (s

′,·)
i , with f

(s,·)
i and f

(s′,·)
i belonging,

respectively, to the set of populations of vectors sculpted in E1 and in E3, as
a function of the coordinate index i (squares). Inter-landmark distances have
been used as facial coordinates. Circles and crosses are the same quantity, but

f
(s,·)
i and f

(s′,·)
i belonging to a random partition of the E1 dataset (circles) and

of the E3 dataset (crosses). The error-bars represent the Bootstrap standard
deviation, σ(·), or the statistical fluctuations of the coordinate differences with
respect to the number of subjects only. Inset: associated p-value (of the t-value,

(f
(s,·)
i −f (s

′,·)
i )/σ(·)). The i = 2, 6, 7, 10 coordinates result barely distinguishable

or completely undistinguishable.

Fig. 9 presents the tij matrix elements corresponding to landmark Cartesian
coordinates. The error has been calculated as specified in sec. 4.

12 Image deformations along principal axes

In figure 10 we report the facial images I[y(i, η)] corresponding to the vectors:

y(i, η) = 0 + η e(i)

i.e., to a deformation of the average facial vector along the i-th principal axis,
or the i-th eigenvector of C (from inter-landmark distances), in increasing order
of eigenvalues, λ1 < λ2 < · · · < λD−1 (the 0-th eigenvalue is null and corre-
spond to the constraint h = 1). Every row of figure 10 corresponds to a different
eigenvector, while each column corresponds to a value of η in the set −3q, −q/2,
0, q/2, 3q, q = 0.075 (the central column corresponding to the average facial
vector). Higher rows, corresponding to lower associated eigenvalues λi, repre-
sent uncommon (say, unpleasant) deformations with respect to other axes (for

equal η’s), since their associated standard deviation, λ
1/2
i , is lower (c.f. figure

11). The e(1) eigenvector, for instance, is a linear combination such that the
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type i, j |Cij | tij = Cij/σCij p-value
hh 8,6 0.105 1.583 5.85e-02
hv 7,0 0.102 1.613 5.51e-02
hv 9,4 0.098 1.628 5.35e-02
hv 9,1 0.100 -1.677 4.85e-02
hv 10,0 0.104 1.722 4.42e-02
hv 10,2 0.111 -1.732 4.33e-02
hv 7,2 0.113 -1.779 3.93e-02
hv 9,0 0.104 1.807 3.70e-02
hv 8,3 0.112 1.963 2.63e-02
hh 9,7 0.101 1.985 2.51e-02
hh 9,5 0.104 2.054 2.14e-02
hh 9,8 0.103 2.118 1.85e-02
hh 6,5 0.121 2.119 1.84e-02
hv 10,3 0.109 2.133 1.78e-02
vv 3,1 0.093 -2.276 1.26e-02
hv 7,4 0.114 2.289 1.22e-02
hv 9,3 0.108 2.497 7.16e-03
hh 7,5 0.104 2.514 6.86e-03
hh 10,9 0.101 2.581 5.72e-03
vv 3,2 0.117 -2.643 4.84e-03
vv 4,2 0.109 -2.870 2.55e-03
hh 8,5 0.099 3.112 1.24e-03
hh 8,7 0.113 3.242 8.31e-04
hh 10,8 0.106 3.349 5.91e-04
hh 10,7 0.101 3.793 1.34e-04
vv 4,1 0.122 -3.872 1.02e-04
hh 10,5 0.121 3.878 9.94e-05
vv 2,1 0.116 -4.824 2.81e-06

Table 3: Relevant experimental correlations Cij in terms of inter-landmark
distances along with their corresponding t-value. v/h denotes the verti-
cal/horizontal character of the involved coordinates di and dj .
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Figure 7: Impact of the subject’s gender in different facial coordinates. Differ-

ences among facial coordinates y
(s,·)
i − y(s

′,·)
i , with y

(s,·)
i and y

(s′,·)
i belonging,

respectively, to the set of populations of vectors sculpted by female and subjects
in E1, respectively, as a function of the coordinate index i (squares). Inter-
landmark distances have been used as facial coordinates. Circles and crosses
are the same quantity, but y

(s,·)
i and y

(s′,·)
i belonging to a random partition

of the dataset of female (circles) and male subjects (crosses). Symbols, error-
bars and inset are as in Fig. 6. The i = 0, 3, 4, 6, 7 coordinates result barely
distinguishable or completely undistinguishable.
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Figure 8: Impact of the subject’s gender in different principal components. Dif-

ferences among principal components of the facial vectors, y′
(s,·)
i − y′(s

′,·)
i , with

y′
(s,·)
i and y′

(s′,·)
i belonging, respectively, to the set of populations of vectors

sculpted by female and subjects in E1, respectively, as a function of the coor-
dinate index i (squares). Symbols, error-bars and inset are as in figure 6. The
i = 3, 5, 7, 8, 10 principal components result barely distinguishable or completely
undistinguishable.
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Figure 9: The tij-value corresponding to the correlation matrix among facial
coordinates, tij = Cij/σCij

, in terms of Cartesian landmarks coordinates. The
diagonal (equal to the unit vector Cii = 1) has been set to zero for clarity.

face width increases while the jaw width decreases, or vice-versa, an uncom-
mon, “forbidden” deformation according to the correlation matrix (see table
3), which indicates that these distances tend to increase or decrease together.
Conversely, the lower rows, corresponding to high eigenvalues (larger than one,
i.e., larger than the standard deviation of the single coordinates yi), represent
common deformations. The last eigenvector, i = 10, consists mainly in deforma-
tions in which the horizontal distances positively covary, by a roughly common,
positive factor (see the e(10) eigenvector components in figure 12). The eigen-
vectors i = 1, 4, 9 are the ones along which male and female subjects are more
distinguishable.

13 Relevant angles

In sec. Results (main article) we have presented a geometric interpretation of the
sign of the oblique correlation matrix elements in terms of some relevant inter-
landmark segment angles, shown in figure 4 (main article). The sign of a given
oblique matrix element (say, in terms of Cartesian landmark coordinates) Cij =
〈δyα(i)δxα(j)〉 (with δxα = xα − 〈xα〉, and the same for y) coincides with that

of the slope of the average inter-landmark line, ∆y/∆x, where ~∆ = 〈~̀α〉 − 〈~̀β〉.
This is the only way in which the fluctuation of the α–β segment slope around
its average value, (∆y + δyα)/(∆x + δxβ)−∆y/∆x may vanish, at first order in
the δ’s.

This provides a clear interpretation of matrix C: the fluctuations gener-
ated by various subject’s different aesthetic criteria are such that they tend to
respect some natural angles of the face, those defined by the inter-landmark seg-
ments evidenced in figure 4 (main article). The figure shows the inter-landmark
segments corresponding to the oblique correlations 〈yαxβ〉 exhibiting higher t-
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landmarks involved |Cij | tij p-value
y7x 0.109 1.675 4.90e-02
y7x 0.109 1.685 4.80e-02
y14x10 0.105 -1.688 4.78e-02
y14x12 0.105 -1.722 4.46e-02
y7x7 0.135 1.723 4.45e-02
y9x7 0.132 1.748 4.23e-02
y9x12 0.115 2.092 1.99e-02
x14x1 0.132 2.098 1.97e-02
y1x10 0.109 2.124 1.85e-02
x14x7 0.117 2.164 1.68e-02
x12x10 0.110 2.196 1.56e-02
y9x10 0.111 2.700 4.28e-03
x12x7 0.113 3.003 1.82e-03
x12x14 0.142 3.245 8.79e-04
y7y1 0.129 3.513 3.77e-04
y9y1 0.124 4.234 3.22e-05
y9y7 0.170 5.018 1.70e-06
x3x1 0.136 6.495 4.03e-09

Table 4: Relevant experimental correlations Cij in terms of landmark Cartesian
coordinates, along with their corresponding t-value, tij = Cij/σCij

. The first
column indicates c(i)α(i)c(j)α(j), where α(i) is the landmark index involved and

c(i) = x or y.

value: perhaps representing the most relevant angles. One could be tempted,
at this point, to attribute a quantitative estimation of the relative importance
to each one of these segments, proportional to the C t-value or modulus. The
following arguments suggest that this method is not the optimal way of assess-
ing such relative relevance of various inter-landmark segments, and provide a
further motivation to the application of the Maximum Entropy method to this
problem.

A rigorous assessment of the relevance of various inter-landmark angles or
slopes cannot be directly addressed from matrix C, since a slope, in the gen-
eral case, is defined as a correlation among four landmark Cartesian (or inter-
landmark distance) coordinates ((yα−yβ)/(xα−xβ)). Furthermore, the empirical
correlations are, in principle, an indirect manifestation of the effective interac-
tions which cause them. The Maximum Entropy method allows to infer such
effective interactions, from which we can more significantly assess the relative
importance of various inter-landmark segments [1].

As can be seen in table 4 and figure 4 (main article), the sign of Cij coincides
with that of ∆y/∆x for all the oblique Cij elements, except 〈y9x10〉. This matrix
element has a reason to be peculiar: the 9-th and 10-th landmarks are subject
to a constraint. In the construction of the facial image, y9 − y10 is constant for
all the vectors in the dataset (and equal to the value of this quantity in the ref-
erence portrait). For a similar reason, we have not included the segment 7–12 in
figure 4 (main article), despite there being a strong oblique correlation involving
both quantities, since this correlation reflects another a priori constraint in the
dataset: the 12-th landmark height coincides with the mouth’s height by con-
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struction. x12 = x7 = x18. Equivalently, in the case of inter-landmark distances
(see table 3), the presence of the constraint h = 1 induces a null eigenvalue in
C and leads to negative correlations among some facial coordinates d1,2,3,4, not
directly interpretable, as with 〈y9x10〉. The Maximum Entropy method can pro-
vide an interpretation of the results of the empirical matrix C, correcting the
artifact induced by such constraints (or quasi-constraints) [1].

To summarise, the inter-landmark segment angles provide a clear interpre-
tation of C, which, in its turn provide a cue of the most relevant angles that
we evaluate when we form impressions about a face. To perform a rigorous
assessment of the relative importance of various facial elements, however, one
should use an inference technique going beyond the bare correlation.

14 Application of the Maximum Entropy method

The above arguments motivate a Maximum Entropy-based approach to the
problem [6, 7]. The goal is to infer a probability distribution L(y) from the
experimental dataset S (see 2). L reproduces by construction some data suf-
ficient statistics (at least two-coordinate correlations). L(y) is a probabilistic
generative model of the dataset S, and can be interpreted as the probability
of the facial image with facial coordinates y (and fixed reference portrait) of
being sculpted by any subject (or by a given subject having selected or sculpted
the dataset S). Inferring L, one also infers a matrix (or a tensor) of effective
interactions between couples (or p > 2-plets) of facial coordinates, that reflect
the relative influence of the facial feature ins each other. This approach provides
a theoretical framework allowing to rigorously account for a priori correlations
and constraints, and to address on information-theoretical grounds the relative
relevance of various variables [1].

15 Higher order and spurious correlations

A natural and relevant question is to what extent higher-order correlations of
the data are statistically significant. In other words, whether three-coordinate
empirical correlations 〈yiyjyk〉 in our dataset exhibit a large t-value. The answer
is that, although we do observe non-negligible three-coordinate correlations, we
cannot attribute a cognitive origin to them–they are rather generated by an
artifact of the genetic algorithm. In experiments E1-3, the vectors of the initial
population, f (s,n)(0) (see sec. 3) exhibit small 2- and 3-distance correlations that
self-propagate and grow through the generations. Indeed, different populations
sculpted (after T = 10 generations) by the genetic null model (with random

left-right choices) exhibit significant 2- and 3-distance correlations, C
(2,3)
null . The

null correlations are to be “subtracted” from those of the experiments with

human subjects, C
(2,3)
obs , in order to isolate relevant correlations of cognitive

origin only (C
(2,3)
h ). This is an interesting inference problem per se, of wide

generality. It would arise also in experiments with natural facial images that
are selected by subjects. The Cnull correlations in this case would correspond to
the background correlations corresponding to the database of natural images,
prior to the selection by the subjects.
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Subtraction of 3-order null correlations. On the one hand, 3-order

correlation tensors C
(3)
obs and C

(3)
null coincide within their statistical errors. We in-

terpret this fact concluding that our experimental scheme does not allow to elicit
relevant 3-coordinate correlations of cognitive origin. Nevertheless, we believe
that such high-order correlations may exist and play a role in the cognitive pro-
cess of facial discrimination, and would probably emerge in larger experimental
datasets, with higher values of S. Subtraction of 2-order null correlations.

On the other hand, the 2-coordinate correlation matrix C
(2)
obs measured from the

experimental data of E1,3 is clearly distinguishable from C
(2)
null, and exhibits

larger matrix elements in absolute value. The “subtraction” of null from ob-

served correlations cannot be performed simply as C
(2)
h = C

(2)
obs−C

(2)
null, since this

leads to a non-positive definite matrix in general. An alternative method, that
we will motivate, analyse and describe in detail in a forthcoming communication,
is given by the following procedure: (i) the non-standarised connected correla-
tion matrices corresponding to the null experiment and to the experiments with
humans are first defined: ˜Cnullij = 〈fifj〉 − 〈fi〉〈fj〉 and so with ˜Cobs; (ii) one

then defines the interaction matrices: Jobs = ˜Cobs
−1

, Jnull = ˜Cnull
−1

; (iii) the
interaction matrix Jh is defined in the following way:

Jh = Eobs
† diag(εh)Eobs (21)

εhi = εobsi −
[
EobsJnullEobs

†
]
ii

(22)

where Eobs is the matrix diagonalising Jobs (or ˜Cobs) and εh are its eigenval-
ues; (iv) one defines Ch = Jh

−1; (v) finally, one standarises the matrix Ch:
Cij = Chij (εhiεhj)

1/2. In steps (i-v) we have just lowered each eigenvalue of
matrix Jobs, εobsj , by a quantity which is the expected value of Jnull according
to the corresponding eigenvector of Jobs. Since the effective null interaction
matrix (in the language of Maximum Entropy inference) is much lower than the
interactions of cognitive order, the D quantities εhi are all positive. We have

used this method to isolate the spurious and artifact correlations C
(2)
null from the

observed experimental correlations Cobs in E1,E3, leading to the matrix called
C throughout the article. The C matrix elements so obtained are very close
to that of the matrix Cobs − Cnull (but the matrix C is positive definite). In
Fig. 13 we show a comparison of Jobs − Jnull vs. Jh, for which this comparison
is more evident since these matrices are not subject to the standarisation con-
straint. This fact suggests that the method efficiently “removes” the spurious,
artifact correlations induced by the genetic algorithm from the data. A definite
confirmation will be provided in future experiments, in which the correlations
present in the initial condition of the genetic algorithm will be removed. In
any case, all the results presented in this article are qualitatively identical us-
ing simply C = Cobs. In the future publication [1] we will present a further
rigorous method to “subtract” Cnull from Cobs, motivated in the context of the
Maximum Entropy method.

16 Bibliography
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i I[yi(η)], η = −3q,−q/2, 0, q/2, 3q
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Figure 10: Facial images I[η e(i)] corresponding to various eigenvectors i (in
different rows). Different columns correspond to various values of η, the central
column (η = 0) is the average sculpted facial image in all rows. While high rows
represent uncommon deformations (at a given η) with low C-eigenvalue λi,
lower columns represent common deformations expanding most of the dataset
variability. 24
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Figure 11: Spectrum of matrix C (blue curve). Larger than one eigenvalues
correspond to eigenvectors that vary more than the physical (standarised) com-
ponents, and vice-versa. The orange curve is the spectrum of the correlation

matrix obtained as the average of y
(s,n)
i y

(s,n)
j over both subject and population

indices, (s, n). The green line is the spectrum of matrix Ch (see 15).
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Figure 12: The vector components of the eigenvector e(10) of matrix C (for

inter-landmark distances), e
(10)
j , vs. j. The error-bars have been calculated

by bootstrapping. The 10-th eigenvector (see figure 10) is essentially a scale
transformation of the horizontal quantities (barely by the same factor, except
for the inter-eye distance), and a linear combination of vertical quantities with
smaller factors.
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Figure 13: Comparison among the matrices Jobs − Jnull and Jh for Cartesian
landmark coordinates. The upper triangle corresponds to the −(Jobs − Jnull)
matrix elements (the minus sign allows for a direct comparison with the C
matrix). The lower triangle, to −Jh matrix elements. The diagonal has been
set to zero for a clearer comparison.
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